{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## SLIM for market basket analysis\n",
"In this example, we are going to train a SLIM model on a transactional database\n",
"\n",
"SLIM uses the [Minimum Description Length](https://en.wikipedia.org/wiki/Minimum_description_length) principle\n",
"to make pattern mining easier, as the resulting patterns will be a **lossless compression of the original data**\n",
"\n",
"You end up having less data to consider, and your life just gets easier"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This tutorial was tested with the following version of skmine : 1.0.0\n"
]
}
],
"source": [
"import skmine\n",
"\n",
"print(\"This tutorial was tested with the following version of skmine :\", skmine.__version__)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from skmine.itemsets import SLIM"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SLIM can be used to perform Market Basket Analysis\n",
"\n",
"Here we define a set of transactions containing items bought in a store"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[['bananas', 'milk'],\n",
" ['milk', 'bananas', 'cookies'],\n",
" ['cookies', 'butter', 'tea'],\n",
" ['tea'],\n",
" ['milk', 'bananas', 'tea']]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"D = [\n",
" ['bananas', 'milk'],\n",
" ['milk', 'bananas', 'cookies'],\n",
" ['cookies', 'butter', 'tea'],\n",
" ['tea'], \n",
" ['milk', 'bananas', 'tea'],\n",
"]\n",
"D"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" itemset | \n",
" usage | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" [bananas, milk] | \n",
" 3 | \n",
"
\n",
" \n",
" 1 | \n",
" [tea] | \n",
" 3 | \n",
"
\n",
" \n",
" 2 | \n",
" [cookies] | \n",
" 2 | \n",
"
\n",
" \n",
" 3 | \n",
" [butter] | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" itemset usage\n",
"0 [bananas, milk] 3\n",
"1 [tea] 3\n",
"2 [cookies] 2\n",
"3 [butter] 1"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"slim = SLIM(pruning=True)\n",
"slim.fit_transform(D)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"----------\n",
"What if a new user comes to the store and buy some items ?\n",
"We add its shopping cart to the data, like so"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[['bananas', 'milk'],\n",
" ['milk', 'bananas', 'cookies'],\n",
" ['cookies', 'butter', 'tea'],\n",
" ['tea'],\n",
" ['milk', 'bananas', 'tea'],\n",
" ['jelly', 'bananas', 'cookies']]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"D.append(['jelly', 'bananas', 'cookies'])\n",
"D"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Just retraining SLIM will give us a freshly updated summary of our market baskets"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" itemset | \n",
" usage | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" [bananas, milk] | \n",
" 3 | \n",
"
\n",
" \n",
" 1 | \n",
" [bananas, jelly] | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" [cookies] | \n",
" 3 | \n",
"
\n",
" \n",
" 3 | \n",
" [tea] | \n",
" 3 | \n",
"
\n",
" \n",
" 4 | \n",
" [butter] | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" itemset usage\n",
"0 [bananas, milk] 3\n",
"1 [bananas, jelly] 1\n",
"2 [cookies] 3\n",
"3 [tea] 3\n",
"4 [butter] 1"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"SLIM().fit_transform(D)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "165px"
},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}