Base¶
Base methods and classes for scikit-mine
-
class
skmine.base.
MDLOptimizer
[source]¶ Base interface for all models applying the Minimum Description Length principle.
-
abstract
generate_candidates
(*args, **kwargs)[source]¶ Generate new candidates, to be sent for later evaluation.
Calling this function is equivalent to sending a new message given an encoding scheme, while calling
.evaluate
is equivalent to receiving this message, and evaluating the gain of information it provides.- Returns
A set of new candidates
- Return type
object or Iterable[object]
-
abstract
evaluate
(candidate, *args, **kwargs)[source]¶ Evaluate the gain, i.e the gain of information when accepting the candidate.
- Parameters
candidate (object) – A candidate to evaluate
- Returns
Should return a tuple, with first two values corresponding to new data size and model size in the case of accepting the candidate.
Data size and model size should be returned separately as we encourage usage of (two-part) crude MDL.
- Return type
tuple (data_size, model_size, ..)
-
abstract
-
class
skmine.base.
BaseMiner
[source]¶ Base class for all miners in scikit-mine.
-
get_params
(deep=False)[source]¶ Get parameters for this estimator.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
set_params
(**params)[source]¶ Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
object
-